
April 10, 2003

ME T ADB
Metaphor Representation using a Relational Database System

MICHAEL R. MEISEL
MMEISEL@UCLINK.BERKELEY.EDU

INTRODUCTION TO METADB

MetaDB is a database and user-friendly, web-based interface intended for use in cataloging, examining,
and computing metaphor. MetaDB is intended to help realize the goals of the MetaNet project – namely,
to catalog as many cross-cultural metaphors as possible in a complete, widely accessible, and human- and
computer-searchable manner.

Embodied Construction Grammar

The concepts behind MetaNet and the general structure of MetaDB are based on Embodied
Construction Grammar (ECG), a non-language-specific formalism for representing linguistic constructs
that was originally developed by Benjamin Bergen and Nancy Chang as a part of the Neural Theory of
Language (NTL) project. ECG itself (and, indeed, the NTL project as a whole) is based largely on the
linguistic theories of George Lakoff and Mark Johnson.

The rest of this section contains my own interpretation of the concepts in ECG that are relevant to
MetaDB. As such, it is designed primarily for those not familiar with ECG. If you fall into this category,
keep reading. A lot of the rest of this document may not make sense to you unless you have read this
section. For a more complete description of ECG (as well as the appropriate references), see “Embodied
Construction Grammar in Simulation-Based Language Understanding” by Bergen and Chang.

SCHEMAS

A “schema” is a way of describing conceptual categories such as containers, mammals, or commercial
transactions. Schemas are defined through their relationships to other schemas (see “Relationships
Between Entities of the Same Type” and “Bindings”) and through their “roles.” Roles are simply the
constituents that are required to define a category. For example, you could not have a commercial
transaction without a buyer, a seller, some sort of good or service to be exchanged, and some sort of
payment. Hence, a commercial transaction schema would need roles such as “buyer,” “seller,”
“payment,” and “goods.” As a more abstract example, a “Container” schema would need roles such as
“interior” and “exterior.”

Roles can also have types. Role types are similar to data types in a programming language; they specify
what type of thing a role can be filled with. For this reason, they are also often called role restrictions –
they restrict the type of thing that can be assigned to a particular role. To learn more about how role types
are used, see “Bindings.”

METAPHORS

The concept of metaphor in ECG is the same as the intuitive concept of metaphor. However, this concept
can be applied to a great deal of everyday language not typically considered metaphorical. For example,
ECG treats the statement “prices rose” as a metaphor. If you don’t see how this could be the case, ask
yourself this: When the prices in question increased, did they, in any literal sense, move? The verb “rose”
belongs to the domain of movement through physical space. In this example, spatial movement is the
“source domain” of the metaphor – the conceptual category in which the literal meaning of the statement



belongs. “Prices,” on the other hand, belong in a domain we might call commerce. In this example,
commerce is the “target domain” of the metaphor – the conceptual category in which the subject of the
metaphorical statement belongs.

You might have noticed that I referred to the source and target domains of a metaphor as “conceptual
categories,” the same phrase that I used to describe schemas. This was no accident – in ECG, the source
and target domains of a metaphor are, in fact, just schemas. A metaphor is a mapping between the roles
of these two schemas. In the “prices rose” example, we might say that the “height” role of the “spatial
movement” schema (the source domain) maps to the “expense” role of the “commerce” schema (the
target domain). A single mapping like this is generally referred to as a “pair.” There would, of course, be
several other pairs involved in this metaphor, all of which should in theory be enumerated when creating
its formal representation.

RELATIONSHIPS BETWEEN ENTITIES OF THE SAME TYPE

We would be hard pressed to define any reasonable number of schemas without being able to express
relationships between them. The same is true of metaphors. There are, in fact, two ways that entities of
the same type can be related in ECG – entities can be “subcases” of other entities of the same type, or
they can “evoke” other entities of the same type.

A “subcase” of an entity is a special or more specific case of that entity. For example, a “vessel” is a
specific type of “container;” accordingly, the “vessel” schema would be a “subcase” of the “container”
schema. Entities can also be subcases of multiple other entities of the same type. For example, a schema
for “building” would certainly be a subcase of the “container” schema (or a subcase of one of the
“container” schema’s subcases, and so on), but buildings can also be bought and sold, so the “building”
schema would also need to be a subcase of the “good” schema.

When we say that an entity “evokes” another entity, we are stating that the evoked entity is somehow
required in order to define the entity that evokes it. What this means is best illustrated by an example.
Suppose we intended to define a schema for the concept “into.” It would be difficult to imagine such a
concept without knowing about the “container” schema or a common spatial movement schema called
“source-path-goal.” However, “into” is not a special case of either of these schemas, but rather a new
concept built with the use of these schemas (see “Bindings”).

Additionally, evoked entities are given “local names,” names used to reference them in the context of the
entity being defined. When we assign a local name to an evoked entity we can be said to be “instantiating”
it. Instantiation is a concept from the realm of computer science that essentially means making a local
copy of an entity that we can make changes to without affecting its properties in the general case. It is
necessary to give each evoked entity a local name since it is possible to evoke two separate instances of the
same type of entity. For example, we might want to define a schema for the concept of “meeting.” It
would be difficult to describe the dynamics of “meeting” without one “instance” of the “source-path-goal”
schema for each involved party.

BINDINGS

A binding is an association between two entities. Binding two entities can be thought of as setting them
equal to each other. Returning to the “into” example, simply evoking the “container” and “source-path-
goal” schemas doesn’t define how they relate to each other in order to help form the concept “into.” This
is why we need bindings. Bindings are what tell us that the “exterior” role of the “container” schema
refers to the same thing as (that is, is equal to) the “source” role of the “source-path-goal” schema, and
that the “interior” role of the “container” schema refers to the same thing as the “goal” role of the
“source-path-goal” schema.

Now it should be clearer why role types/restrictions are useful. An “interior” in the “container” schema
and a “goal” in the “source-path-goal” schema both refer to locations in physical space, so it makes sense



that we would be able to bind them together. It wouldn’t make sense, however, to create a binding
between the “buyer” role in the “commercial transaction” schema and the “interior” role in the
“container” schema, for example, since a “buyer” is not a location in physical space (he may reside in one,
but is not actually one himself).

CONSTRAINTS

Bindings are a subset of a more general class called “constraints,” which can also include any other
restrictions required to define a specific entity. One type of constraint that is not a binding is an
assignment of a value to a role. One example that might require such an assignment is a “triangle”
schema. A triangle is a type of polygon, so we would want “triangle” to inherit from a general “polygon”
schema, which would have a role for “number of sides.” In order to distinguish subcases of this schema,
such as “triangle,” we would need to constrain the number of sides to the correct number for the specific
subcase – in this case, three.

USER INTERFACE TUTORIAL

A sample version of the MetaDB user interface is currently available at
http://mrm.mine.nu/metanet/list.php. You can actually take this tutorial at the aforementioned address
if you like; otherwise, just follow along with the illustrations.

The first page you will see when you load MetaDB’s
web interface is the main list. The main list displays all
schemas and metaphors in the database. You can click
on any of the “View/Edit” links to modify an existing
entry, or click on one of the “Add New” links to add a
new schema or metaphor to the database. You can also
remove entries by clicking on the appropriate “Delete”
link. For now, try clicking on the “Add New” link in the
“Schemas” section. This will take you to the “Edit
Schema” page.

The “Edit Schema” page allows you to edit existing
schemas, or, in our case, create new ones. To create a
new schema, first enter a name in the field near the top of the page. The system will now allow you to add
this schema to the database if you like, but a schema wouldn’t be very useful without any roles, so let’s
enter some. You can add roles one at a time by typing the name of the role into the field labeled “Role

Name”, optionally providing a type in
the “Role Type” field, and clicking the
“<- Add Role” button. After you click
the button, the role will appear in the
list to the left. If you make a mistake or
simply change your mind, you can
remove a role by selecting it in the list
and clicking the “Remove Role”
button. When you are done, click the
“Add/Modify Schema” button to save
your new schema in the database. You
will be taken back to the main list page
where you should now see your new
schema listed in the “Schemas” section



(in some browsers you may have
to refresh the page first).

Once there are at least two
schemas in the database, we can
move on to metaphors. Click on
the “Add New” link in the
“Metaphors” section. This is the
“Edit Metaphor” page. Just like
on the “Edit Schema” page, the
first step is to name the
metaphor. Once you’ve done
this, pick the source and target
domains from the popup menus
labeled “Source Domain:” and
“Target Domain:”, respectively.
These popup menus contain all of the same schemas listed on the main list. When you select the source
and target domains, you’ll see the roles for the schema you selected appear in the list below. Now, you can
create pairs for the metaphor by selecting one role in each list and clicking the “Add ->” button. You will
notice that creating a pair with two roles removes them from the lists on the left. This does not mean that
the role has been removed from the schema; this behavior is only to make sure that roles are not paired
more than once. If you make a mistake or change your mind, you can remove a pair by clicking on one of
its constituents in the list of pairs on the right (the matching role will be selected for you automatically) and
clicking the “<- Remove” button. Once you have completed your pairings, click the “Add/Modify
Metaphor” button to save your new metaphor and return to the main list.

Let’s go back to the “Edit Schema” page for a moment; click on the “View/Edit” link next to one of the
schemas listed in the “Schemas” section. You may have already noticed the “Subcase of:” and “Evokes:”
labels just below the “Name” field. If you created this schema yourself earlier, there will probably be
nothing listed there. Click the “Modify…” button to the right. You are now looking at the “Edit
Relations” page. This is where you can specify which schemas this schema is a subcase of, as well as what
schemas it evokes (evokes relations are not yet implemented) and any bindings required (also not yet
implemented). Doing any of these things is fairly straightforward; the interface is quite similar to other
portions of the MetaDB user interface that you have already used. To mark this schema as a subcase of
some other schema, simply select that schema from the list in the “Subcase of” section and click the “Add

->” button to the right. To create
an evokes relation, select the
schema to be evoked in the list on
the left of the “Evokes” section,
type a local name into the field
labeled “As Local Name:”, and
click the “Add ->” button directly
to the right. The interface for
creating bindings is the same as
the one that you used for creating
pairs in a metaphor. In the
future, this same page will be
used to create relations for
metaphors as well. For right now,
make this schema a subcase of
some other schema (as described



above) and click the “Modify” button.

You are now back at the “Edit Schema” page, but a few things have changed. First of all, as you might
expect, the schema you selected on the previous page is now displayed in the “Subcase of:” list near the
top of the page (to the left of
the “Modify…” button).
Secondly, there is a new
section of the page labeled
“Inherited Roles.” Each
bulleted item in this section
consists of the schema that the
role is inherited from (in
parentheses) followed by the
name of the inherited role.
Your schema will have these
roles in addition to any roles
that you define. The difference
is that inherited roles cannot
be modified directly. (To
modify an inherited role, either
change what schemas this
schema is a subcase of or
change the roles in their
original schemas.) For
example, the illustration below
shows a schema for “room,” which is a subcase of the “container” schema. The “portal” role comes from
the “container” schema as you might expect, but the other roles are from the “bounded region” schema.
This may seem confusing since the “room” schema is not a subcase of the “bounded region” schema.
However, the “container” schema is a subcase of the “bounded region” schema, and therefore inherits its
roles. Since those roles are (inherited) roles of the “container” schema, they also become (inherited) roles
of the “room” schema, which is a subcase of the “container” schema. The “Inherited Roles” section tells
you from which schema the role originated. This way, if a role is named incorrectly, for example, you
know which schema you need to modify in order to fix it. You may see similar behavior now that you’ve
made your schema a subcase of some other schema.

You may have noticed the “Constraints” field on both this and the “Edit Metaphor” page. This field
allows you to enter arbitrary constraints by simply describing them in textual form. The preferred format
for textual constraints is that used in the ECG formalism (see Feldman). As bindings are not yet
implemented, a good temporary solution is to enter them into the “Constraints” field. To save your
changes, click the “Add/Modify Schema” button.

IMPLEMENTATION

MetaDB has two separate components: a relational database and a web-based user interface (UI). The
data model is designed to be flexible enough to represent the complex relationships that can occur in an
ECG-based system. As a result, the database system is unable to enforce many important integrity
constraints on the data (such as ensuring that the entities referenced as the target and source domains of a
metaphor are schemas). Instead, the UI takes responsibility for enforcing these integrity constraints by
simply not providing a way for the user to input incorrect data in such cases.



User Interface

The MetaDB UI is designed to require knowledge of the linguistic concepts involved (as described above),
but not of the ECG formalism itself. Since it is beneficial to the MetaNet project to make data entry as
easy as possible, using the MetaDB UI should require only the linguistic knowledge necessary to
understand the data itself. As a result, the UI is designed to be as intuitive and straightforward as possible.

The UI is implemented using PHP and JavaScript. PHP scripts generate the HTML pages using data
from the database, and the JavaScript allows the interface to be responsive to the user, providing feedback
as the user works.

When creating or modifying metaphors or schemas, all necessary data is stored temporarily in HTML-
form fields before the form is submitted for entry into the database. Form field values are initialized with
either values from the database or values sent to the file using the POST method. Form field values can be
changed dynamically using JavaScript.

Data Model

The data model for MetaDB is designed to be easily extensible. Every entity in the database has a unique
integer id, all of which appear in the “Entities” table. This allows flexibility in referencing other elements
in the database – for example, a subcase relation can be owned by a schema, a metaphor, or any new type
of entity that might be added to the database in the future without any change to the “SubcaseRelations”
table itself.

MetaDB uses the concept of table inheritance to accomplish this flexibility. Tables that inherit from other
tables automatically inherit all of their column names, and the parent table automatically includes all
entries in any sub-tables (but not vice-versa). In MetaDB, there are two subcategories of entities: named
entities and owned entities. This dichotomy is meant to distinguish entities that are meaningful on their
own from entities that are only meaningful with regards to other entities. A table may be a member of
both subcategories if its entities can be referenced on their own but still in some sense “belong” to other
entities. The “Roles” table is such a table. The diagram above shows the relationships between the various
tables currently present in the system, where the arrows point from the sub-table to its parent. As bindings
are not yet implemented, there is as of yet no table present to represent them.

Requirements

SERVER-SIDE

MetaDB requires PostgreSQL version 7.3 or higher. The UI requires a web server that supports PHP 4
with PostgreSQL extensions.



CLIENT-SIDE

The MetaDB UI should run on any modern web browser that supports JavaScript and Cascading Style
Sheets (CSS). It has been thoroughly tested with the Gecko engine (Netscape 6 and newer, Mozilla,
Phoenix), the KHTML engine (Konqueror, Safari with some minor bugs), and the latest versions of
Microsoft Internet Explorer for both Macintosh and Windows.

Files

DB.PHP

This file contains wrapper functions for all of the database specific calls. This allows the system to be re-
implemented using a different data storage method if necessary. However, all of the functions are still
expected to return an array of arrays where the elements in the sub-arrays can be referenced by the
column names from the existing data model.

LIST.PHP

This is essentially the root page for the system. It displays available metaphors and schemas and directs
the user to the correct page to create a new metaphor or schema or modify an existing one. It also handles
deletion.

METAPHOR.PHP

This page is the interface for creating new metaphors and modifying existing ones. Creating and
modifying a metaphor’s relationship to other metaphors is handled in relations.php. Any changes to the
database are performed in submit.php.

PAIRINGS.JS

This file contains JavaScript functions for implementing a set of controls consisting of four HTML
“SELECT” elements where items from the first two lists can be paired together and the pairs displayed as
corresponding elements in the second two lists.

RELATIONS.PHP

This page is the interface for modifying the relationships between entities of the same type. In the current
version, only schemas support this relationship, and bindings are not yet supported at all. In future
versions, this page will handle editing relationships between metaphors as well.

SCHEMA.PHP

This page is the interface for creating new schemas and modifying existing ones. Creating and modifying
a schema’s relationship to other schemas is handled in relations.php. Any changes to the database are
performed in submit.php.

SUBMIT.PHP

This page has no interface, but instead handles all modifications to the database other than deletion,
which is handled by list.php.

UTILS.PHP

This file contains some useful utility functions for use in other PHP code.



DB-SCHEMA.SQL

This file contains the actual SQL code that defines the current data model. The proper column names
that the system expects from the functions in db.php can be found here.

KNOWN ISSUES AND FUTURE PLANS

The system should make use of the “Extras” table. This would allow saving the contents of the examples
field (which is not currently saved), and keeping track of updates to the database.

“Evokes” relationships are not yet saved to the database.

Bindings are not yet implemented, though the user interface for creating them is. However there should
also be field for “setting.”

The “Edit Relations” page is not yet hooked up to the “Edit Metaphor” page, so it is as of yet not possible
to create relationships between metaphors.

There is a bug in the “Edit Metaphor” page that causes roles that are inherited from a schema’s parents’
parents (and parents’ parents’ parents, and so on) not to appear when the schema is selected as the source
or target domain for the metaphor.

Role types/restrictions should be better specified. There are three types of role restrictions – references to
schemas, references to elements in an external ontology, and references to “basic types.” A “basic type” is
simply an ordered, possibly infinite set from whose elements the role in question can take its values. A few
examples of basic types are the integers, level of animacy, and gender. In order to make proper use of
basic types, we would need to develop a way to store them in the database and an addition to the user
interface for creating and modifying them.

Metaphors should also be able to have roles. Without giving a specific example, it seems that there are
situations where a metaphor requires additional roles not present in either the source or the target
domain.

The ultimate goal of the MetaNet project is not only to provide a tool for linguists but also to support an
implementation of a language understanding system. The crucial step in doing this is to create a library
for programmers to access data in the MetaDB database in a manner that enforces the same constraints
that the user interface enforces and does not require knowledge of the data model. The library should
provide a similar set of operations to those provided by the user interface. Hopefully, MetaDB will
eventually be used as a primary storage and retrieval system for linguistic information in a larger language
understanding system with supporting input provided through the user interface.

REFERENCES

Bergen, Benjamin and Nancy Chang. “Embodied Construction Grammar in Simulation-Based Language
Understanding.” 2002. To appear in Jan-Ola Östman and Mirjam Fried (eds.), Construction Grammar(s):
Cognitive and Cross-Language Dimensions. Johns Benjamins.

Feldman, Jerome A. “A Proposed Formalism for ECG Schemas, Constructions, Mental Spaces, and
Maps.” 2002. Unpublished.

Lakoff, George and Mark Johnson. Metaphors We Live By. Chicago: University of Chicago Press, 1980.


